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Abstract

High-dimensional communications holds the potential to provide a high-throughput scheme which

has a rate that scales super-linearly (considering bits per symbol). To benefit from the super-linear

growth and obtain high data rates, combinatorics and more abstract methods need to be considered

to obtain the extra bits of information. The key benefit of a super-linearly scaling scheme is once the

scheme is known the solution to gaining a faster rate is merely achieved by increasing the number of

channels.

The primary focus of this work is displaying how the rate of a scheme’s capacity grows as the

number of resources increase. Research showed that schemes exist which offer O(n log(n)) type

growth, but nothing was found to offer O(n1+ε) growth for some positive quantity ε.

Here, work is done to explore the super-linear growth rate problem, and a contender for poly-

nomial capacity growth, O(n1+ε) is found. This attempt at an original pathway to such a scheme is

found through The Graph Modulation, by looking at the communications problem by considering the

mathematical object of the graph. Various methods are employed to attempt to solve the problem,

but no ideal solution was found.

Permutation Modulation, the first scheme to achieve super-linear growth (giving O(n log(n))), is

benchmarked against a high lower bound for its space usage. Results showed that despite permu-

tation modulation’s non-optimal space usage, the rank decoder offers significant benefits in terms of

decoding computation requirements and gives a practical solution to implementing permutation when

n is driven to a large value.

Finally, the high lower bound used to analyse permutation modulation was found through an origi-

nal codebook generator made specifically for this work, to space points evenly on a high-dimensional

sphere. A codebook generator is constructed as the Thomson Modulation, which aims to use the

available space within the power limits of a transmitter in an optimal manner by aiming for maximum

minimum distance properties to be achieved. Results showed that the constructed codebook gen-

erator achieved better distance properties than QAM and was validated as a high lower bound for

space usage.
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Nomenclature

Communications Objects

ρi Denotes a power

S Denotes a linear SNR

Mathematical Objects

〈. . . 〉 Denotes a list

C The field of complex numbers

F2 The finite field with two elements

R The field of real numbers

X Mathcal denotes a set unless used for distributions or Big O notation

X Mathfrak denotes a space

? Denotes an optimal object

{. . . } Denotes a set

X[i] Denotes the i’th element in a list

Operators

|·| Number of items in a set, list or array

|x| Absolute value (for scalars)

O(·) Description of limiting behaviour of a function

Statistical Objects

ρ̄i Bars denote a mean, identical to the expectation

E(·) Expectation

Φ(x) The CDF of the normalised Gaussian

σ The standard deviation of a Gaussian

Pi Denotes a probability
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Chapter 1

Introduction

1.1 Communications Today

Before the appearance of the Internet and even the telephone, telecommunications brought about

a clear mental image, the telegraph. The emergence of the telegraph in the 1830s disrupted percep-

tion of the scale of the world, the Pony Express (the fastest method to get a message across the

USA) ceased operating as there was no way to compete with the far superior electrical signal.

Each development since the advent of telegraph (facsimile, voice and then data) has only further

shrunk the planet and allowed for greater amounts of faster communication between people and

machines.

We currently live in a period where mobile telephones are owned two thirds of humanity, with

adoption increasing every year [1]. Data is moving around at an all-time high also due to the uptake

of IOT devices, biometric data logging, larger files (higher-quality photos for instance) and more.

Despite living in a time of high data transfer there still is a thirst for more, the migration to faster

networks (4G in particular) will contribute to the predicted 50 exabytes of video that will be globally

streamed in 2022, while under 5 exabytes were streamed throughout 2016 [1].

It is vital to continue innovating on the tools we have at our disposal in communications, as band-

width over the air is finite and comes at a premium cost (O2 for instance paid £317.72M in April

2018 for 40MHz of the 3.4GHz spectrum) [2]. Fortunately the field of communications is far from

young, with plenty of discoveries and optimisations that allow for interesting methods to be applied

and explored to yield better, more efficient results for the bandwidth available.
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1.2 Capacity Growth Rates

A full system’s bit rate can be defined as:

Bit Rate = Symbol Rate× BPS× Framing× FEC (1.1)

Where FEC is Forward Error Correction, and Framing is to do with the clustering of bits in discrete

packets, both terms have the unit of bits per bit, making them dimensionless. FEC and Framing are

not important to this physical layer project so they are not considered, therefore the fundamentals

that are left to work with are:

Bit Rate ∝ Symbol Rate× BPS (1.2)

While increasing symbol rate is one potential method of gaining a higher Bit Rate, this project is

focused on the BPS (Bits Per Symbol) term. If an increase in this factor can be achieved in a manner

which is robust for its noise performance, future demands for high data rate communications can be

satisfied while being efficient with bandwidth.

This project in particular explores capacity growth rate and how ‘conventional’ schemes’ capacity

grows as O(n) (n being the number of resources available, for this project n defines the number of

dimensions, or ‘half RF channels’), and then discusses other schemes offering capacities that grow

faster than this.

This project explores and simulates some more advanced modulation schemes (Permutation,

Rank and eluding to Graph) to see if the schemes can be applied in reality to attain higher data

transfer rates. These newer, more advanced schemes use mathematical methods to beat the linear

growth rate set out by existing and commonplace conventional schemes.

1.2.1 Shannon-Hartley theorem

The Shannon-Hartley theorem states the theoretical tightest upper bound on the capacity C in

an Additive White Gaussian Noise (AWGN) channel with bandwidth B and linear SNR S can be

described as the following:

C = B log2(1 + S) (1.3)

Where the linear SNR S is defined as the mean signal power divided by the power of the noise

S =
ρ̄signal

ρnoise
(1.4)
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This theorem sets a limit to the highest possible rate that can be achieved for a given scheme. An

effort is made in this project to optimise schemes to reach their capacity limit with as low an SNR

as possible. This is achieved by making the ‘distance properties’ of a scheme as ‘good’ as possible,

how this is defined and achieved is discussed in this project.

1.3 Literature Review

Interest in capacity growth rates is an interesting step to take towards developing extremely high-

capacity schemes. Slepian, in 1965 developed a scheme [3] named Permutation Modulation which

has a capacity that grows faster than any ‘conventional’ scheme like QAM (one whose codebook is

exhaustively defined and is only copied when adding another RF channel), and has a capacity that

grows O(n log(n)).

A paper exists on the application and an overview of permutation modulation [4], which outlines

the significant impact it has had on the progress in new communication schemes. One of the schemes

highlighted in particular (Rank Modulation) is of interest as versions of it are beginning its use in

computer memory, with practical examples given by A. Jiang in 2009 [5]. Using combinatorics allowed

Slepian’s scheme to develop and branch into multiple other schemes, such as Index Modulation

[6], Parallel Combinatory Modulation [7] and more. The amount of recent effort on these schemes

displays the interest schemes which offer super-linear capacity growth has, and their applications

demonstrate that they have a place in the modern communications world.

Index modulation is currently not used in practise but offers the potential to ‘do more with less’

by using nulled carriers activated by a second signal constellation to gain more capacity [6]. Index

modulation is in the permutation family, and is presently expected to become a part of 5G or 6G

systems [6].

All the reviewed literature suggested that permutation-based schemes are going to become a

mainstream part of communications in the near future, and the interest in super-linear capacity growth

is something to focus effort on.

1.3.1 Gap Analysis and Aims

During the research performed no analysis was found on the effectiveness of space usage of

Slepian’s scheme. Slepian in his 1965 paper also offered ideas on how to generate optimal ‘levels’

for his permutation scheme, yet suggested there was room to improve the scheme for minimum error

probability. No research was found on setting optimal ‘levels’ for permutation, so original research is

offered on setting the ‘levels’ for his scheme, which has the potential to offer a higher power-limited

capacity with lower signal to noise ratios than what is currently achieved.

Interest in a scheme that offers capacity to grow polynomially O(n1+ε) (for some positive quantity
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ε) is strongly of interest. A scheme growing polynomially would scale significantly faster than Permu-

tation Modulation and satisfy the need for increased data rates for years to come. Despite extensive

research no scheme has been found which scales as O(n1+ε), and no documents were found which

offer or suggest capacity scaling greater than Slepian’s outlined scheme.

The information gathered from this literature review highlighted major areas that original research

can be performed in at an accessible level.

Another area for research shown was the need for research on a scheme with polynomial scaling

capacity. Although potentially a bit beyond the scope of this project, the literature exposed the lack of

and need for a scheme that satisfies the polynomial growth requirement.

This project aims to analyse the fundamentals of super-linear capacity growth through the permu-

tation modulation, as well as set optimal ‘levels’ for the permutation scheme.

The project then aims to analyse the effectiveness of space usage of the permutation scheme,

when compared to a high lower bound of space usage when distance properties are used.

No literature was found on point spacing in volumes, so an aim was set to create an original

codebook generator to optimally place points in a space, which gives a comparable high lower bound

on space usage.

1.3.2 Report Structure

This report is structured to initially discuss the discrete communications model, and how this

framework was validated and made for the high-dimensional communications problem.

The report then discusses distance-based schemes, in terms of commonly known schemes such

as QAM and PSK, before showing efforts to develop an optimised scheme for the available space a

transmitter has at its disposal.

A chapter on ordering based and heuristic schemes comes after which shows how super-linear

capacity growth is achieved, and how the schemes used can be optimised to provide the lowest bit

error rate for a given SNR. A practical implementation is given to show how the super-linear growth

can be realistically exploited. In the same chapter some experiments are performed to try and find a

scheme which grows more quickly by using the structure of the graph.

�
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Chapter 2

Model and Methodology

2.1 Discrete Communications Model

2.1.1 Requirements

To test and validate various modulation schemes the mathematics describing performance can

become extremely dense. To aid the speed of testing and development, a discrete model of the com-

munications problem was developed in MATLAB®1 to test ideas before a more in-depth mathematical

formalism was applied.

The model (whose process flow is shown in figure 2.1) (and is identical to the Shannon-Weaver

model of communication [8]) takes randomly generated binary data and modulates it. This signal is

then sent to a channel where complex AWGN is added. This noisy signal is then fed to a demodulator

and the received binary data are compared with the original data to obtain a Bit Error Rate (BER).

Data Modulate Channel Demod-
ulate

Compare
Data

Figure 2.1: Process Flow of the discrete model

Type of System modelled

Communication can exist in many different systems, which operate in different spaces. Radio

communication can use the complex space as both in-phase and quadrature components exist on a

single channel.

Storage media (for example a DRAM cell) can exist in the positive real space, or even in the

case where the number of electrons contained in a single DRAM capacitor can be counted, just the

positive integers.

For the purposes of this project, the focus is on complex spaces, but the results can be generalised
1MATLAB® is a registered trademark of The MathWorks, Inc.
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to work in real spaces. If a system has two independant real spaces, they can be considered as

pseudo-in-phase and pseudo-quadrature components, making the results applicable both ways.

Justification of Discrete model

A discrete model was used in this project as when simulating a system similar to real life through

modulation and demodulation with a high-frequency carrier, filter effects are experienced. These filter

effects would mean the test is not performed in a true non-bandlimited AWGN channel. The discrete

model was preferred as the filtered system would beat ‘theoretical’ performance.

In the interests of validating a model with theoretical results and allowing its extension onto mod-

ulation schemes such as Rank, Graph and more, the discrete model was preferred, as it allows for

direct comaprison of any developed systems.

Re(·)
x(t)

exp(jωt)

I(t) + jQ(t)

Figure 2.2: How In-phase and Quadrature components are transmitted in reality. Filters would be
used to extract these components, so discrete complex values are transmitted instead (to preserve

true AWGN for accurate results).

Data

The data in d and data out d′ that this project considered is in binary. Binary exists in the Galois

Field with two elements GF(2) which is written henceforth as the finite field with two elements F2.

For a binary data array of length m, this is noted as the vector space d ∈ Fm2 . For all experiments

a maximum entropy source was considered, which implies each element of d having the statistics of

being assigned a one as di ∼ Bern
(

1
2

)
.

Codebook

Work began by considering a (shared) codebook C which contains M symbols. A ‘symbol’ is a

one-hot vector in n dimensional space which corresponds to a single value in binary. To restrict where

elements of C can exist, a Euclidean space2 was defined for which every element in C can exist in,

C ⊂ Rn. The power limit for a symbol is an important feature in communications, so the maximum

power per n-dimensional symbol was enforced for this project to be unity. This restriction shrinks the

space of possible locations for symbols to be a n-ball (a hypervolume bounded by an (n− 1)-sphere)

with unit radius:

Bn = {x ∈ Rn : ‖x‖2 ≤ 1} (2.1)
2Euclidean space is used as noise adds in a Euclidean manner across n channels
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and the (n− 1)-sphere having the definition:

Sn−1 = {x ∈ Rn : ‖x‖2 = 1} (2.2)

where the L2 norm is defined as

‖X0‖2 =

√√√√n−1∑
i=0

|X0[i]|2 (2.3)

Each possible symbol is defined as Xi ∈ C, such that C = {X0, X1, . . . , XM−1}.

For a general APSK (Amplitude Phase Shift Keying) scheme, a codebook generator was con-

structed to generate M-QAM, M-PSK, M-ASK, M-PAM and OOK constellations. Typically, the symbols

used by a APSK modulator are represented efficiently as complex numbers, Xi ∈ C, or Xi = ai+ jbi,

where j =
√
−1, which gives a two-dimensional symbol. The complex number interpretation of a dis-

crete signal extends to what is achievable in the practical case, quadrature and in-phase components

of a sinusoid can be modulated to transmit and extract a complex number on a single channel as in

figure 2.2 on the previous page.

In this report modulation schemes are explored which use symbols with a number of dimensions

greater than two, Xi ∈ Rn, so the decision was made to represent all symbols as lists3, Xi =〈
x0
i , x

1
i , . . . , x

n−1
i

〉
(for some integer n resembling the number of dimensions in the symbol). For the

case of the typically complex symbols above they are packaged into a two-element list X0 = 〈ai, bi〉.

While this is just a notation detail, each of these n dimensions are sent in
⌈
n
2

⌉
pairs as each channel

has two orthogonal dimensions, which helps to increase rate. For example, the symbol in R4, Xi =

〈1, 2, 3, 4〉 would be sent over two channels as Xi,0 = 1 + j2, and Xi,1 = 3 + j4.

Under the alternative power constraint that each channel has an independant maximum power,

the space a symbol can exist in is defined differently. A single complex channel (with quadrature and

in-phase components as x1, x2) has a usable symbol region of the 2-ball, B2. If two of these complex

channels (the second having components x3, x4) are used in parallel and each has a two-ball of

usable symbol region (power limits are independent to each channel), then the available space for a

symbol to exist in is the Cartesian product of two 2-balls.

D4 = B2 ×B2 =
{

(x1, x2, x3, x4) | x2
1 + x2

2 ≤ 1, x2
3 + x2

4 ≤ 1
}

(2.4)

This object is known as the duocylinder and is analogous to the cylinder in three dimensions. Numer-

ical integration4 found D4 to have 2.0 (to 5 s.f) times the hypervolume of B4, which implies double
3Which are denoted by angled brackets (〈·〉), with the i’th element in a list X being X[i]
4Numerical integration was performed by inscribing a duocylinder and a 4-ball inside a 4-cube, placing uniformly dis-
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the number of symbols can be fitted inside gaining an extra bit of information. D2k space is only

mentioned in the Graph Modulation section of this report.

Modulator

The modulator for this model takes the binary data d and for a given number of bits (defined by

the scheme’s capacity) assigns a symbol, which is then passed to the channel.

Channel

The simulations used only consider an AWGN channel yt = xt+zt, where yt is the received signal

on a single channel, xt is the transmitted signal, and zt is a stationary random variable, all at time t.

In the case of an RF channel, the complex plane C is used for transmission, meaning that zt ∼

CN
(
02,1,

ρnoise√
2
I2

)
where ρnoise is the noise power in the AWGN channel, which can be found from

S =
ρ̄signal
ρnoise

, which is the SNR (signal to noise ratio) of the channel, and ρ̄signal is the mean power of the

modulated signal. ρ̄signal for a specific scheme can be calculated by

ρ̄signal =
1

|C|
∑
Xi∈C
‖Xi‖22 = E(‖Xi‖22) (2.5)

In the case of a DRAM cell as mentioned earlier, only positive real values can be used, such that

zt ∼ N (0, ρnoise). For this report the decision was made to explore the RF channel case, such that zt

is distributed as the complex normal distribution.

A received signal is represented by a list of elements for each dimension Y t =
〈
yt1, y

t
2, . . . , y

t
n

〉
. In

this discrete model it was assumed that it doesn’t matter how Y t is received, whether the transmitted

elements were sequential or parallel, as ρnoise for every channel is identical.

Demodulator

Since symbols are equally likely, maximum likelihood regions were defined which are regions

Ri ⊂ Rn for all i = 1, . . . ,M , which do not intersect Ri ∩Rk = ∅ for all i 6= k. Under the case that a

recieved symbol Y t is assigned to the nearest neighbour X?,

Xt
? = arg min

Xi

∥∥Xi − Y t
∥∥

2
(2.6)

Which implies the existence of distinct regions Rk ⊂ Rn, where a detected Yi may land in, mapping to

a single symbol Xk. Each region Ri is defined as all points that map to Xi. The analytic detail on the

regions Ri can be found by constructing a Voronoi Diagram (a tangible example in R2 can be found

in figure 2.3 on the following page). Unfortunately Voronoi Diagrams for r points in d dimensions

tributed random points (such that all points lie in the 4-cube), and counting the proportion of random points inside each of
the two spaces



2.1. DISCRETE COMMUNICATIONS MODEL 10

require O
(
rd

d
2e
)

storage space to define, so it is not often feasible for high dimensional spaces.

Maximum likelihood detection is the preferred method of detection, but some schemes (such as Rank

Modulation) use scheme-specific methods of decoding in the interests of computation speed. These

methods are explored and compared where applicable against the maximum likelihood benchmark

later in the report.
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Figure 2.3: An example of a Voronoi
Diagram with 10 randomly distributed points.

Note the magenta boundaries of
equidistance between green points, which

define each individual region Ri.
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16-QAM Example Transmission
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Figure 2.4: Example of a test run by the
simulator, 16-QAM at 15dB SNR. Each point

is a transmitted symbol, corrupted by the
AWGN channel.

2.1.2 Governing Test Algorithm

Each ‘test’ of a modulation scheme has to be divided into separate parts:

1. A list of SNRs to test at is generated (linearly spaced in dB between appropriate ranges).

2. An experiment is run at each SNR in the list which lasts for 5×104 symbols, an experiment runs

as follows:

(a) Generate random data.

(b) Encode the binary sequence as a list of symbols.

(c) Corrupt symbols with an AWGN channel.

(d) Decode the resulting list and convert to binary.

3. A comparison is made between expected and actual results and the outcome logged to a file.

4. Steps 2-3 are repeated 100 times for each SNR, giving a total length of 5 × 106 symbols per

SNR value. An example of steps 2-3 is visible in figure 2.4, which shows how each transmission

is observed by the demodulator and is detected, with errors highlighted and tracked.
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5. Statistics are then performed on the results file, giving the scheme’s measured performance.

The decision to repeat the test many times with random data is a Monte-Carlo method, in which

many repeated random samples are taken, and the results analysed for accurate scheme perfor-

mance.

2.1.3 Validation

To validate the discrete model computer program that was created, the constructed simulator was

initially tested on BPSK. The encoder used the codebook C = {−1, 1}, and the decoder used was

maximum likelihood (nearest neighbor) as in equation (2.6) on page 9. BPSK was initially used as

the bit error probability has a simple closed form [9, pg. 271]

Pbit error = Q
(√

2S
)

(2.7)

Where Q
(
x
)

is the Q-Function (the tail of the normalised Gaussian Distribution):

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du = 1− Φ

(
x
)

(2.8)

This result can be derived by considering the problem graphically. BPSK was considered with the

same C as noted above, which means that any error in the imaginary dimension does not change the

assigned symbol. This problem therfore reduces to a 1D Gaussian in the real dimension (marginal-

ising over the imaginary dimension), which can be drawn as following, looking at the probability of

being correctly assigned to the transmitted symbol, −1:

Re(y)

p(
R

e(
y
))

−4 −2 0 2 4
0

0.2

0.4

0.6
N (−1, 1)

Incorrect Assign, R1

Correct Assign, R0

Figure 2.5: BPSK demodulator probability of correct assign sketch.

By drawing figure 2.5 the tail of the Gaussian is what is incorrectly assigned. To convert from a

Gaussian with a generic variance to a normalised Gaussian the z-score is used, which is z = y−µ
σ′ .
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The z-score of interest occurs is when y − µ = 1, as this defines the boundary at which the two

decision regions R0 and R1 meet when analysing the −1 symbol. It is worth noting that the power

for the imaginary and real components is split in such a way that σ2
real + σ2

imag = σ2, and since these

components are equal and BPSK marginalises over the imaginary dimension, σ2
real = σ2

2 .

Since σ2 is the noise power, and the signal power for this case is unity, the SNR S = 1
2σ2

real
. The

result σreal =
√

2S
−1

is then plugged into the z-score for z (y − µ = 1) =
√

2S, which when used to

calculate the probability of a bit error is Q
(√

2S
)

, which confirms the result claimed in equation (2.7)

on the preceding page.

The BPSK simulation results in figure 2.6a on the next page closely matched the theoretical

performance of the scheme, with the Q-function’s prediction being within the 1σ bars set out. This

result proved that the simulator produced correct results for a codebook with elements on the real

line.

The next stage was to test with QPSK, which has a simple closed form for its SER (the analogy

being that QPSK is a combination of two BPSK modulators) of [9, pg. 272]

Psymbol error = 1−
(

1−Q
(√

2S
))2

(2.9)

and has a BER of [10, pg. 172]

Pbit error ≈ Q
(√

S
)

(2.10)

The simulation was run again for the QPSK case and the results again closely matched theory as

can be seen on figure 2.6b on the following page. 27 out of 29 results were in a 1σ range, all were in

a 2σ range. This result was taken to qualify the simulator for quadrature signals, and demonstrates

that the noise is correctly calculated.

2.2 Limits of communication in an AWGN Channel

As mentioned earlier in equation (1.3) on page 3, there is a fundamental limit as to what the RF

channel can provide in terms of capacity for a given SNR. Since the discrete model is used, the

bandwidth B is set to unity as the ‘sampling bandwidth’.

An interesting consequence of the high-dimensional nature of this project is that a number of in-

dependant dimensions greater than two is used in some of the schemes explored. Channel capacity

is well known to be additive over independant channels [11], meaning that using n
2 independant chan-

nels used in an independant manner gives the same upper bound on performance as the channels

used in a combined fashion.

Nonetheless, reaching the capacity limit of a scheme with as low an SNR as possible is important
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Figure 2.6: Validation simulation results (100 trials per SNR), error bars show the standard deviation
for each test
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(b) Mutual Information for QAM

Figure 2.7: Mutual information for 2-D modulation in an AWGN channel against SNR for QAM and
PSK schemes

to have in communications, so effort was expended on optimising schemes such that their BER

decreases to a low (BER ≤ 10−3) point with as low an SNR as possible. One way of visualising this

is with a mutual information plot as shown in figure 2.7, where it is clear that QAM outperforms PSK

in terms of reaching its maximum theoretical capacity sooner. Methods exist for calculating mutual

information [12] (which were used to calculate the noted plots) but extending this method was outside

the scope of this project, so BER curves (as in figure 2.6) were compared for a given capacity per

channel.

�



14

Chapter 3

Distance-Based Schemes and

Optimisation

This chapter covers schemes which have a capacity that grows O(n), with respect to number of

resources. Conventional schemes (like QAM, PSK) are discussed to show that adding an extra

channel only linearly increases capacity, before discussing other methods of generating a codebook

to optimally fill the space available for transmission of a symbol. This chapter also acts as a primer

before discussing schemes with a faster growth rate in the next chapter.

3.1 Conventional Schemes

3.1.1 Conventional Scheme Optimisation

For a given scheme in any APSK sense on a single complex channel, the problem of creating an

optimal codebook can be defined as maximising the minimum distance between symbols.

C? = arg

(
max
C⊂B2

(
min
i 6=j
‖Xi −Xj‖2

))
(3.1)

Conventional schemes operate in C space, so by considering the number of dimensions n, one

channel will have two dimensions.

Distance properties are very useful, as the point in space that a Yi is measured in defines which

region Ri and therefore which Xi the symbol is assigned to. The point’s location is perturbed by the

noise on the Gaussian channel in a Euclidean sense (each orthogonal direction is added linearly),

so it makes sense to maximise L2 distance between symbols.

To demonstrate the importance of distance properties, QAM, PSK and PAM can be compared to

show that the method of placing the one-hot code vectors can change the SNR at which the BER

becomes sufficiently low.
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3.1.2 Capacity Growth Rate

For a ‘conventional’ scheme, the growth rate in terms of bits per symbol grows linearly with the

number of channels (where each channel is complex) provided the SNR is sufficiently high.

Each channel has M different messages which can be sent, therefore log2(M) bits are sent per

channel, so overall n2 log2(M) bits are sent over n
2 channels in the ideal case.

3.1.3 Results

Results showed that despite having the same capacity schemes differed in their performance. An

experiment was run for the case of M = 16 (shown in figure 3.1), the best performing scheme was

QAM, and reached a BER 10−3 at 3.9 dB before PSK, and 17.9 dB before PAM.
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Figure 3.1: A comparison of the BER
performance of various conventional
schemes (QAM, PSK and PAM) with

identical capacity.

I

Q

Figure 3.2: Square 64-QAM lattice. The
dashed line resembles the maximum symbol

energy for the scheme, which can be
interpreted as the outer boundary on the

2-Ball B2.

3.2 The Thomson Modulation

The Thomson modulation was originally created by the author of this report to try and find a

method of realistically achieving maximum minimum distance properties given a space constraint.

The scheme relies primarily on a codebook generator that was created for the purpose of this

work, with the focus to compare directly to permutation modulation later in this report in section 4.1 on

page 26. The purpose of its construction was to analyse how well permutation codebook generation

uses the available space Sn−1 (or even when considering the maximum symbol energy constraint for

all possible space available in Bn).

A ‘high lower bound’ codebook generator was required which attempts to place equispaced points

either on or inside the unit sphere, but this generalises to comparing to all possible schemes.
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3.2.1 A High Lower Bound on Spacing of Elements of C in Bn and Sn−1

If the QAM lattice in figure 3.2 on the preceding page is inspected, unused volume in the power

limit can be seen which is available and could be utilised to obtain better distance properties.

The Thomson modulation has two variants in how it generates its codebooks:

1. The ‘on the unit sphere’ (C ⊂ Sn−1) constraint is considered as it is used as a direct comparison

to permutation modulation’s ‘equal symbol energy’ constraint, which has symbols only on the

surface of the unit n-sphere. This constraint is considered for the best possible usage of space

on the (n− 1)-sphere for maximum minimum distance, as specified in equation (3.2)

2. The ‘inside the unit sphere’ (C ⊂ Bn) constraint is considered for the best possible usage of

space in the n-ball for maximum minimum distance, as specified in equation (3.3)

C?1 = arg

(
max
C⊂Sn−1

(
min
i 6=j
‖Xi −Xj‖2

))
(3.2)

C?2 = arg

(
max
C⊂Bn

(
min
i 6=j
‖Xi −Xj‖2

))
(3.3)

Only a small modification to the algorithm was required to switch between generation of either

variant, which is discussed in the next section.

High Lower Bound Generating Algorithm

The work by J.J. Thomson [13] and specifically his work on considering how electrons arrange

themselves on a 2-sphere was initially used as a guide to develop an iterative method to spacing

points. The objective of Thomson’s problem is to determine the minimum electrostatic potential en-

ergy for k electrons contained to the surface of a unit sphere with a force given by coulomb’s law [13].

This problem led to and inspired the development of an algorithm which works on any n-dimensional

space where points are embedded in either Bn or Sn−1.

The problems posed are similar, one is how to place k points optimally on Sn−1, and the other

being placing k points optimally inside Bn.

To find a solution to this problem iteratively, each symbol was defined as a point pi ∈ Rn with a

vector in Euclidean space pi =
〈
p0
i , . . . , p

n−1
i

〉
, which has a velocity vi ∈ Rn and acceleration ai ∈ Rn.

Each point is assigned an identical mass m and a randomised starting position in the n-ball or on the

(n−1)-sphere depending on the variant. From here a ‘force’ can be considered acting on each point,

which is calculated by assuming each point behaves like an electron, and calculating the electrostatic

repulsion force vector as

Fi =

k∑
r=1,r 6=i

f(pr − pi)
‖pi − pr‖32

(3.4)
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where f is a force multiplying constant. The ‘force’ on point i from a single other point acts in the

direction of point r to i (normalised) and scales as the inverse of the Euclidean distance squared.

O
p2

p1

F1

p3

F̂ r
1F is

1

Figure 3.3: Diagram to aid in demonstrating how
instantaneous forces on a single node p1 are
calculated from three points on a sphere, and

then how the force’s radial component is removed

Figure 3.4: A Thomson Codebook with M = 64 in
R3, using the ‘C ⊂ S2’ constraint

After force calculation Euler’s method is applied to update positions (given a simulation time in-

crement ∆t), velocities and accelerations for all points before the next round of force calculations.

ai(t+ 1) = ai(t) +
Fi −Dvi‖vi(t)‖2

m
(3.5a)

vi(t+ 1) = vi(t) + ai(t) ·∆t (3.5b)

pi(t+ 1) = pi(t) + vi(t) ·∆t (3.5c)

To force the symbol to be embedded inside the n-ball, Bn, the position vector pi is normalised

after calculation updating its position if its L2 norm is greater than unity. If there is a need to force the

symbol to be on the (n−1)-sphere, pi is normalised after its position update no matter the magnitude,

p̂i = pi
‖pi‖2

.

To prevent a velocity from winding up a small positive ‘drag’ term D was introduced to remove

‘energy’ from the system. Another method to prevent velocity windup was importantly removing

radial components of force when a point is on the boundary. Removing the radial component is

critical as otherwise the velocity will continue to wind up on account of the position being normalised

continuously. This could be achieved by taking the dot product of Fi with a tangent-space to the

(n − 1)-sphere at point pi. In practise this projection method is a difficult problem when considering

high dimensions, so an approximation was created which considers the vectors as dimensionless
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quantities (in terms of units). By considering Fi existing with its root at pi as in figure 3.3 on the

previous page, a radial unit vector can be constructed going towards (pi + Fi).

F̂ r
i =

pi + Fi
‖pi + Fi‖2

(3.6)

If pi is subtracted from F̂ r
i , the tangent-space projection approximation is obtained as the in-sphere

force, F is
i .

F is
i = F̂ r

i − pi (3.7)

It is important to stress this method is only used for points on the boundary (‖pi‖2 = 1), which for the

case of ‘C ⊂ Sn−1’ is every point. While the method’s effects were not explored in significant depth,

far fewer iterations were required until a ‘solution’ was found, but it was found to cause instability with

too high a ∆t or high a force multiplying constant f . Reducing the number of required iterations until

convergence was extremely important for this algorithm as it has O(k2n) complexity.

An Energy Function was also calculated for convenience which sums the total force on all points,

with lower ‘energies’ being more well spaced and stable solutions.

By running the iterator, ‘ideal’ codebooks can be generated for n dimensional spaces, by testing

for a steady state at each iteration (t), the test used is

k∑
r=1

∥∥xti − xt−1
i

∥∥
2
< Emax (3.8)

When this condition is satisfied the simulation is considered to be solved, as the update is sufficiently

small. The quantity Emax is defined as a small quantity, which was a multiple of the machine error

(given by the eps function in MATLAB) in the simulations used.

This codebook generating method proved successful for the ‘C ⊂ Sn−1’ constraint with an exam-

ple codebook being visible in figure 3.4 on the preceding page. After some experimentation for the

‘C ⊂ Bn’ constraint, it was found the ‘force function’ in equation (3.4) on page 16 was inappropriately

spacing points, and driving all the points to the outer surface of the ball. Under Thomson optimisa-

tion the minimum distances between points should be identical, yet this result did not follow when

codebooks were initially generated. A new ‘force function’ was made for this scenario which was

Fi =

k∑
r=1,r 6=i

f(pr − pi)
‖pi − pr‖s+1

2

(3.9)

The initiative behind this new force function was to increase the influence of the closest point to any

given point, with the theory that driving s in the limit to infinity would give maximum minimum distance.
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(a) A Thomson Codebook generated using Force
equation (3.4) on page 16, giving uneven distances

between points
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(b) A Thomson Codebook generated using Force
equation (3.9) on the previous page, with s = 20 and

providing equal minimum distances

Figure 3.5: Example Thomson codebooks in R2, with M = 64 and using the ‘C ⊂ B2’ constraint,
showing how different Force Methods change the performance of the spacing. Minimum L2

distances between points should be identical when optimising the maximum minimum distance
constraint

Literature suggests that this is commonly known as Riesz s-Energy [14], and minimising it for s→∞

gives maximum minimum distance spacings for points in the ball. There was success in this endeav-

our, with figure 3.5b (which uses the said Riesz s-energy method) showing a large improvement of

spacing over figure 3.5a (which uses the method outlined in equation (3.4) on page 16).

3.2.2 Validation

The Thomson codebook generator was validated for the case C ⊂ Sn−1 using the Riesz s-energy

method for s = 20, as when s was driven too high numerical instability occurred. The validation that

was used was comparing Thomson codebooks in R3 to the vertices of Platonic solids (regular, convex

polyhedra). Platonic solids are the only case in R3 where perfect spacing can be achieved, as each

edge has the same length and the vertices lie on S2. The Thomson codebooks for k = 6, 12, 30 were

tested and found to adequately converged to the inscribed platonic solids, so the test was deemed a

success. Higher dimensional polytopes exist which are ‘Platonic’, and when a selection were tested

for n = 4 the results also proved to be successful. The Thomson codebook generator could not be

validated for the C ⊂ Bn case as there is no known general solution, but minimum distances between

points were measured, and were all equal for k = 32, 64, 128.

3.2.3 Scheme Performance

An immediate and direct comparison between n = 2, k-Thomson and M -QAM can be drawn,

using the codebooks shown in figure 3.5 (with the C ⊂ B2 constraint). Experiments were run with

M = k = 64 and M = k = 16, with results visible in figure 3.6 on the following page for both
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Min L2 Distance max|Xi| Expected Power PAPR
16-QAM 0.4741 1 0.5556 1.80
16-Thomson 0.5230 1 0.7159 1.40
64-QAM 0.2020 1 0.4282 2.33
64-Thomson 0.2259 1 0.6155 1.62

Table 3.1: Comparing various features between Thomson and QAM codebooks, showing the
Thomson scheme having a higher expected power, and also a lower PAPR when compared to QAM

tests showing the Thomson Modulation did not perform as well as QAM. The poorer performance

of the C ⊂ B2 case when compared to QAM highlights that despite equal spacing being achieved

(when using the second force method), the codebook’s mean power is higher meaning a higher

SNR is required for results similar to QAM. The results in table 3.1 provide information on some

important features for the considered schemes. A lower peak to average power ratio for the Thomson

schemes was found when directly compared to QAM, suggesting a more efficient use of available

transmitter power. The results also indicate a better spacing between constellation points than QAM

was achieved, suggesting for a given transmitter’s available transmission space this method is more

efficient.

The second ‘force method’ performed more strongly than the first, indicating that it allowed for the

more even spacing of points in B2. Minimum distances between points were found to be equal to two

significant figures, indicating that this optimisation was appropriate, but the nearest two neighbours

were not equal for all points.
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Figure 3.6: Plots to show BER vs SNR on Thomson and QAM with an identical rate in R2, the two
‘force methods’ are shown to display the difference improved when the Riesz s-energy method was

used

3.2.4 High-Dimensional Considerations and Future Work

Firstly, more work is required on the optimiser for the case where C ⊂ Bn, there is little (if any)

literature on equispacing points inside volumes and it is not known if the the codes are completely
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optimal for the space under the Riesz s-energy assumption. More work is also required in under-

standing how to properly define forces between points, as basic experimentation revealed that better

results can be generated with different force functions. Perhaps a more sensible approach would be

to consider potential fields around each point, and then for all the points to flow (update their position)

in the direction that gives the greatest decrease in potential.

Different space constraints for the optimiser are also of interest to work with, such as for the case

where the power limit is defined per channel rather than per symbol. Although this solves a slightly

different problem, the space Dn could be used for the maximum power per channel constraint.

The plot shown in figure 3.7a shows the magnitude of hypervolume of Bn as well as the hy-

persurface area of Sn−1 with respect to dimension number n. The non-monotonic behaviour of the

hypervolume and hypersurface area may seem like something which can be exploited, however once

dimensions (in terms of units of length) are assigned to each dimension it is without meaning to

compare between different n (an analogy being comparing a length to an area). A true comparison

as shown in figure 3.7b is obtained by using a dimensionless measure of volume. The measure

which was used to demonstrate was the ratio of Bn’s volume to a circumscribed n-cube. The exper-

iments reveal a monotonic decline in hypervolume and hypersurface area available, which suggests

high-dimensional generation of codebooks in D, B and S may be a poorly-placed focus.
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Figure 3.7: Exploratory work into power limits for higher dimensions
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3.3 Auto-Encoder Modulation

3.3.1 Justification

All the methods employed to solve the maximum minimum distance problem as expressed in

equation (3.3) on page 16 use fairly standard algorithms, greedy in maximising minimum distance.

It was believed there might be some interest in using machine learning methods to see if any better

results can be achieved given certain constraints on transmitted symbol power.

A potential benefit is that given a large codebook (to the point where it isn’t feasible to store all

possible messages) all the different codes need not be stored and the detection can be performed by

the network, without any need for high dimensional distance finding.

Auto-encoders are of specific interest as they are specifically designed to compress a high (m)-

dimensional object (the original Fm2 data) into a low (n)-dimensional latent space (the transmitted

symbol). The field of communications has seen auto-encoders before [15], however their use has not

so far extended to any practical systems.

To obtain a high-level overview on how auto-encoders work, with reference to figure 3.8, binary

data is fed into the ‘Input Layer’ and the network compresses this down to a n dimensional latent

space (the Hidden Layer, the transmitted message). The n-dimensional latent space is clipped such

that a value on each dimension can exist only within the bounds [0, 1].

A Gaussian stationary random variable is added to each of the outputs of the encoder (g−1) and

the noisy n-dimensional latent space is then fed to the decoder (g). In the diagram the channel is

shown as going from the layers with x to the layers with y. This is used when training to enforce good

distance properties, and can be interpreted as a Gaussian channel in practise.

...

...
...

...
...

...

d1,t

d2,t

d3,t

dm,t

x1,t

xn,t

y1,t

yn,t

d′1,t

d′2,t

d′3,t

d′m,t

Input layer
(high-dim. data)

Hidden layer
(transmitted message)

Output layer
(reconstructed)

︸ ︷︷ ︸
Encoder g−1

︸ ︷︷ ︸
Decoder g

Figure 3.8: The auto-encoder structure used, showing how a single batch of data d ∈ Fm2 is
processed at time t
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Figure 3.9: A detail view of each non-shaded neuron (with reference to figure 3.8 on the previous
page), as used in experiments

3.3.2 Implementation Details and Results

An experiment was run to test if an auto-encoder can naturally find a better scheme than what

has been discovered or proposed.

The input vector d was four bits of binary data (din ∈ F4
2) in a two-dimensional latent space, with

limits in the range [−1, 1]. The net used was symmetric (the number of layers in g equalling the

number of layers in g−1), with five layers for each the encoder and decoder.

The decision was made for each layer to work as a sum and and a sigmoid operator as shown in

figure 3.9, where the sigmoid operator is defined as:

σ(x) =
1

1 + e−x
(3.10)

Sigmoid was chosen as the activation function for the neurons as ReLU (Rectified Linear Units) and

other functions could not be found to converge within the limited time and hardware available for the

project.

The channel’s noise power (the variance of the Gaussian random variable) was initialised at a

very low value (1× 10−6) and gradually crept up until the net couldn’t converge.

The auto-encoder was trained on random binary data (each bit being distributed as a Bernoulli

distribution, Bern
(

1
2

)
) and a squared-error loss function was used to calculate gradients.

A Dropout was used at the end of each layer, which has a probability of turning off a neuron’s

output. Dropout is used to aid nets in converging, as some neurons may end up being ‘stuck on’ or off

which is undesirable. The dropout has a probability of being on represented by the random variable

D′ ∼ Bern (γ), the decision was made to set γ = 0.99 as it was sufficient to let the net converge

without hindering training speed.

The results of training the net for sufficiently long on the constraints noted above found eventual

convergence to QAM, as visible in figure 3.10a on the next page. Some effort was put into normalising

the output vector such that it lands on the (n−1)-sphere (as in the Thomson Modulation), but sufficient
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(b) Results of a trial run compared directly to QAM
with an identical rate (M = 16). Error bars are not

available due to how batches of samples were
processed in TensorFlow.

Figure 3.10: Best results achieved from running the neural net in Tensorflow. 5 dense R64×1 fully
layers each with sigmoidal activation and dropout (0.99) on both g and g−1, trained on 400K

examples at 8dB SNR on channel, learning rate of 0.002, batch size of 512.

compute power was unavailable to make the net converge, so the search was halted here.

Results were available for a codebook of sizeM = 16 in a two dimensional space so a comparison

to 16-QAM was created. By running the neural net’s ‘channel’ layer at different SNRs and performing

a threshold on the output of the net, the results can be directly compared. The thresholding operation

(in Python) is expressed as:

bitsOut = [1 if decodeOut_ > 0.5 else 0 for decodeOut_ in decodeOut]

Worse performance was observed with the auto-encoder, with the bit error rate decreasing at a faster

rate but at higher SNRs than maximum-likelihood QAM. The faster rate of BER decrease on the auto-

encoder scheme slowed and converged with the results for QAM on higher SNRs. This may be due

to the auto-encoder not discovering Gray coding, which, when observed the auto-encoder failed to

do correctly. The auto-encoder is not a perfect system as it was not trained for very long (only four

hundred thousand examples) and had a very simple architecture of a multi-layer perceptron.

Potential benefits still exist in higher dimensions where M can be left to grow large, and a

maximum-likelihood decoder is as a result not required to search a large space, conceivably offering

power savings by just performing a few layers of tensor operations.

3.3.3 Challenges

Auto-encoders do come with drawbacks, for large M the auto-encoder needs to see each of

the 2M combinations at least once and more for accurate models. Train times therefore increase

exponentially, suggesting auto-encoders are not a viable solution to the problem of communications
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due to prohibitively large training effort.

A potential highlighted improvement is since (in RF) communications operates in a complex

space, it would also be ideal to have complex-valued neural networks, yet current networks only

exist in real space [15]. This factor also brings into question what neural net structure (in terms of lay-

ers, loss functions, activation etc) should be used, as there is no clear answer as to what the optimal

structure is for the problem of communications.

Typical advanced schemes use feedback, which is a memory effect which until recently was not

able to be incorporated into neural nets due to the lack of it being differentiable [16].

An open question in communications is what SNR S to train the network at, research and experi-

ments have shown that training at low SNR does not allow for the discovery of structure vital for high

SNR communication [15]. Training across many SNRs severely effects training times, so the problem

of the ‘optimal’ SNR to train at remains open.

3.4 Summary on Distance Based Schemes

The work on distance based schemes revealed that little in terms of high-dimensional work had

been applied in the field. Conventional schemes were reviewed and offered simple to describe forms

but came with the drawback of not using all the space the transmitter has available to it.

The Thomson scheme was made for this report to rectify the problem of not using all available

space, and an improvement in the distance properties of constellation points on the space was ob-

served when the optimisation was applied. Despite the improvement of the distance properties, the

average power for the scheme increased, which meant that for a given SNR the scheme appeared

to perform slightly worse than the conventional QAM scheme.

Auto-encoders were also utilised to try and find a structure that maximises distance properties,

but the computational effort required grew quickly and work was discontinued due to project time

limits.

Overall the analysis showed a O(n) type growth of the capacity for conventional schemes. The

detailed analysis on how the Thomson scheme scales with dimensions was not performed due to

being outside the scope of the project.

�
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Chapter 4

Heuristic & Ordering-Based Schemes

This chapter discusses schemes which have a capacity that grows faster than O(n), with respect

to number of resources. Ordering based schemes (like Permutation and Rank Modulation) are dis-

cussed and reviewed to show how the benefit of adding an extra resource can provide the reward

of a super-linear scaling of O (n log(n)). Heuristic schemes are explored and probed in the form of

attempts to find The Graph Modulation, a scheme which could scale as O
(
n1+ε

)
for some positive

quantity ε.

4.1 Permutation Modulation

4.1.1 Definition [3]

In 1965, David Slepian outlined a class of codes and decoders for describing information, in a

system called Permutation Modulation.

The system relies on permuting elements of a generating word to transmit different messages.

What this means is that if there exists a generating code word, for instance (ignoring any constraints

which may be set out later on C for the sake of example) X0 = 〈1, 2, 3〉, the elements can be permuted

such that all 3! = 6 possible permutations can be generated in the codebook:

C = {〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉}

Each of the three elements of a code word would be transmitted on their own separate dimension,

so two complex channels would be required in this scenario. The ‘permutation of the generating word’

feature has an interesting consequence in that all messages have identical energy, the maximum that

can be transmitted.

If this is now generalised to having a generating code word X0 = 〈µ0, µ1, . . . , µn−1〉 for n dimen-

sions, choosing the appropriate values for each µi becomes an interesting problem, as there are

n! different list permutations. Before working on choosing optimal µi values, Slepian outlined some

variants on the scheme which change the way µi values are chosen.



4.1. PERMUTATION MODULATION 27

A general feature of Slepian’s scheme is how he extends the generating code to have repeating

blocks of each value, where a symbol may look like:

X0 =

〈
m0︷ ︸︸ ︷

µ0, . . . , µ0,

m1︷ ︸︸ ︷
µ1, . . . , µ1, . . . ,

mk−1︷ ︸︸ ︷
µk−1, . . . , µk−1

〉
(4.1)

The repeating nature reduces maximum rate per channel, but it provides some robustness to

noise through repetition coding. Optimising an integer on the number of repetitions (mi values) is an

extremely difficult problem however and was outside the scope of this project, so multiplicity 1 codes

were explored, which is the case where all mi = 1.

Slepian outlined two different variants to the Permutation scheme, which set out some rules on

how the µi elements are used.

Variant 1 Coding

Variant 1 of Permutation Modulation allows for each µi to be any real number such that when

considered as a vector lands inside Sn−1, the surface of the (n− 1)-sphere.

n−1∑
k=0

|µk| = 1 (4.2)

The generating list is permuted only, and the appropriate µ is sent on each channel. The absolute

sum of all the µ elements is equal to unity as the assumption of unity is the total maximum power

of the transmission scheme still holds. An example constellation can be viewed in figure 4.1a on

page 29.

An interesting observation on Variant 1 codes in two and three dimensional space is that since no

sign flipping occurs all the points were found to exist on a (n−1)-dimensional hyperplane, a subspace

of Rn. An especially interesting finding was the optimally spaced code hyperplane passes through

the origin. Although Slepian proved that under Permutation modulation Variant 1 that optimal codes

satisfy [3]
k∑
i=1

miµi = 0 (4.3)

a more intuitive and accessable proof was constructed to support the hyperplane claim.

Claim 1. The optimal codes (permuted vectors) for a Variant 1 codebook lie on a hyperplane defined

by J1,nXi = 0 where J is a vector of ones.

Proof of Claim 1. The affine hyperplane can be defined as the set of all points that satisfy

a0x0 + a1x1 + · · ·+ an−1xn−1 = c (4.4)
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for some constant c.

If the permuted elements are fed into this equation in lieu of x

a0µ0 + a1µ1 + · · ·+ an−1µn−1 = c (4.5)

and ai = 1 for all i ∈ 1, 2, . . . , then the ordering of the µ values does not change the constant, thus

proving that permuted vectors satisfy this constraint and therefore all the permuted vectors lie on the

hyperplane H:

H =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=0

xi =

n∑
i=0

µi = c

}
(4.6)

Recalling that the permuted vectors are constrained to be on Sn−1, the space of valid points is written

as V = Sn−1∩H, V follows as a (n−2)-sphere with radius r =
√

1− c2 when in the nonempty region

of −1 ≤ c ≤ 1.

When codes are optimally spaced, the maximum L2 distance and therefore arc length between

them is used, which occurs when the radius of V is maximised. Maximum radius therefore occurs

which is when c is zero, or when H intersects the origin.

Variant 2 Coding

Variant 2 of Permutation Modulation is similar but it only allows for each µi to be any real pos-

itive number such that when considered as a vector lands inside Sn−1, (the same constraint as in

equation (4.2) on the previous page). Variant 2 however operates with another constraint:

0 ≤ µ0 ≤ µ1 ≤ · · · ≤ µn−1 (4.7)

This constraint allows for an interesting method that can be used to encode more messages.

Variant 2 allows for sign flipping of each element, re-using the example from earlier where X0 =

〈1, 2, 3〉 (a valid Variant 2 code), C grows to include permutations where −1 is used in lieu of 1, −2 in

place of 2 and so on for all elements.

As sending the negative of a µi is just a phase effect, identical power per symbol is preserved

and similarly to Variant 1, the absolute sum of all the µ elements is equal to unity. An example

constellation can be viewed in figure 4.1b on the following page.

4.1.2 Capacity Growth Rate

By considering the result of a linear growth rate from section 3.1.2 on page 15, this scheme offers

a significant advantage. For Variant 1 (no sign flipping), the system has n dimensions, which gives

n different ‘messages’ which can be sent from each dimension. When considering all n dimensions
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(a) 6 Permuted Sign-Flip Points on 2-Sphere
(Variant 1)

(b) 48 Permuted Sign-Flip Points on 2-Sphere
(Variant 2)

Figure 4.1: Diagrams to convey what optimal permutation codebooks appear as in R3, each axis is a
separate communications dimension

used together in permutation with the constraint that each µ can be transmitted only once, log2(n!)

bits of transmission are present.

The Stirling Approximation can be used to simplify this capacity expression, which is defined as

follows:

log2(n!) = n log2(n)− n log2(e) +O(log2(n)) (4.8)

When the Stirling Approximation is used, the capacity for Permutation Variant 1 can be shown to

approximate

C1(n) ≈ n(log2(n)− log2(e)) (4.9)

which grows bounded as O(n log(n)).

For Variant 2 (sign flipping), the system has n dimensions, which provides 2n different ‘messages’

which can be sent from each channel when the sign flip is considered, but when considering all n

dimensions used together in permutation, the system therefore has log2(2n · n!) bits of transmission.

When the Stirling Approximation is applied again for this scheme the result is:

C2(n) ≈ n(log2(n)− log2(e) + 1) (4.10)

which also grows bounded as O(n log(n)), as log2(e) > 1.

Another, perhaps more intuitive way of looking at Variant 2 codes is to consider the permutation

and the sign as separate entities. The signs of the n elements can represent a n-bit long word, and

the absolute value of the elements resembling the permutation.

These results give fractions of a bit, which does not have a clear-cut solution to using them. These

spare messages may be useful for error detection (perhaps in check-sums), but for this project the
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set was merely cleaved to only include possible messages (the first 2blog2(|C|)c). For example, for the

Variant 1 code example from earlier with a generating list X0 = 〈1, 2, 3〉, the last two elements are

culled from the list such that only 2blog2(3!)c=4 elements remain.

4.1.3 Binary to Permutation and Back

To describe a permutation, a method using Lehmer codes [17] can be used to systematically

describe the ordering and thus convert from binary to a permutation, and back. This method is

advantageous to have as it prevents the need for the modulator and demodulator to store a large

lookup table.

The default list is assumed to be X0
1, which is ordered. Given a permuted list of n elements, the

first element of the default list can end up in n different positions, so it can be assigned a number

between 0 and n − 1. The next number has n − 1 possible locations, so it is assigned a number

between 0 and n− 2.

A worked example is given with the following permuted list: X� = 〈µ2, µ0, µ4, µ1, µ3〉, and also

given the default list X0 = 〈µ0, µ1, µ2, µ3, µ4〉. µ0 is in the second position of X�, so it is assigned

index 1. µ1 is in the fourth position of X�, but since one element is assigned it’s in the third free

position, so it is assigned index 2. µ2 is in the first free position of X� so it is assigned index 0. µ3

and µ4 are hence given indices 1 and 0.

The index sequence (Lehmer code) X�, which is X�,Lehmer = 〈1, 2, 0, 1, 0〉 is gained from this

permutation, but it still has to be converted to binary. The factoradic system allows this conversion to

take place, which is a mixed-radix numeral system. The conversion on the example works as follows:

Nperm = 1× 4! + 2× 3! + 0× 2! + 1× 1! + 0× 0! = 37 (4.11)

From which an integer (37) is obtained from the permutation X�. The general formula is:

Nperm =

n−1∑
r=0

XLehmer[n− r − 1]× r! (4.12)

To go in the direction of a number to a permutation, the following algorithm can be performed to

generate a Lehmer code:

1. Nperm is saved as variable K, and n is saved as variable N

2. R←
⌊
K
N !

⌋
is calculated, and this integer given is the (n−N )th value in the Lehmer code

3. K is updated to remove the assigned portion K ← K −R×N !

1For Variant 1 this list has different signs, but for Variant 2 the list is entirely positive, with sign flipping occurring by
mapping n bits to signify if the sign is flipped. This is just an implementation detail.
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4. N is decremented by one and the process repeats at step 2, while N > 0

Progressing from a Lehmer code to a permutation is trivial, as it is a mapping pointing which indices

are permuted to which other index.

4.1.4 Demodulation

Slepian gave a useful solution to the problem of demodulation in the original permutation modula-

tion paper [3]. Rather than considering decision boundaries and the L2 norm (a maximum-likelihood

detector, as in equation (2.6) on page 9 ) for deciding which symbol was transmitted, the dot product

can be used to assign a received symbol which is also maximum-likelihood.

Xt
? = arg

(
max
Xi

X>i Y
t

)
(4.13)

In this project, this method was used after comparing to nearest-neighbour (which gave identical

results), as it offered significant speed improvements in the simulator.

Rank Modulation

Rank modulation is a different decoding method that can be used to decide which permutation

was sent. Rank modulation uses a nonlinear sort operation to decode the noisy signal. In MATLAB

the sort function can be used to obtain the indices as follows

[~,orders] = sort(nd_signal,2);

These orders are immediately used with the algorithms as noted in section 4.1.3 on the previous

page. This method offers significant computation speed advantages, a single operation solves the

entire system rather than performing a large number of dot products and picking the maximum.

A consequence of only detecting the order of the received values means that rank modulation is

constrained to Variant 1 codes, unless a sign detector can be used. A sign detector was utilised for

this project, so both Variant 1 and Variant 2 codes were compared.
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Figure 4.2: Comparison of functions that were attempted for the optimisation of Permutation X0
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4.1.5 Generating List Optimisation

The same rule on conventional schemes as in equation (3.2) on page 16 can be applied to choos-

ing the best elements of the generating list to maximise minimum distance when permuted. This is

an important feature to optimise, as maximising the minimum distance between permuted vectors

gives optimal robustness against noise.

A function was made ( permscore(x0) ) which when given a generating list X0 returns a ‘utility

score’ of the code. The score used was the minimum distance between vectors as an L2 norm, the

L2 norm was chosen as it is a convex function, as visible in figure 4.2a on the previous page. Some

work was considered on minimising the maximum dot product, as the dot product is much faster to

calculate, but this method was rejected and invalid as the dot product is a non-convex function as

visible in figure 4.2b on the preceding page.

Convexity was an important feature to have in determining a ‘score’ for each input X0. An opti-

miser was made which optimises the elements (µi) of X0 using the Nealer-Mead Simplex Algorithm

[18], given the constraints set about in section 4.1.1 on page 26. The problem the optimiser solved

was fundamentally

X?
0 = arg

(
max

X0∈Sn−1
permscore (X0)

)
(4.14)

The problem could not be immediately optimised due to the rate at which the codebook’s size

grows. For the case of Variant 2 codes the complexity of permscore(x0) was originally found to

be O
(
(2nn!)2

)
, which was deemed very poor. For instance, for five dimensions in Variant 2, 25 × 5!

(3840) vectors must be generated and then the minimum distance found between all of them, giving

14745600 distances that must be calculated and compared. The solution to allowing this problem

to be solved more efficiently is to observe the symmetry of the permuted vectors. For instance

on the 2-Sphere (as in figure 4.1b on page 29), two orthants were considered as this means the

minimum distance between points in the orthant as well as distance to the nearest points outside

of the orthant can be considered. There are n! points in each orthant (visible in figure 4.1b on

page 29 as the hexagon of points), so once the simplification is applied 2n! points only need to be

considered. When expanded to higher dimensions, more orthants need to be analysed. There also

exists symmetry in the way the L2 norm works, it is commutative, so only half the number of distances

need to be calculated. Applying these simplifications improves the complexity of permscore(x0)

to O
(
(n!)2

)
. For the case of Variant 1 codes all points need to be considered, the optimisation

considering calculating ‘half’ the L2 norms was also still valid meaning comparatively few L2 norms

needed to be calculated.



4.1. PERMUTATION MODULATION 33

A Heuristic Result

After running many optimisations, work was performed on finding a formula which closely approx-

imates the optimally found generating list for Variant 2 due to its much slower optimisation, and allows

for a close starting point for fast convergence to the optimal generating list. The approximated ideal

levels for Variant 2 were

X ′0[i] = (i+ 1)

(
1 +

n+ 1

9

)
− n+ 1

10
, i ∈ 0, 1, . . . (4.15a)

X0 =
X ′0
‖X ′0‖2

(4.15b)

Where n is the number of dimensions considered for the permutation scheme

4.1.6 ‘Optimal Code’ Performance and Random Codes

To benchmark the optimal generating list X0, experiments were performed against randomly gen-

erated codes. A Uniform Distribution was used A ∼ unif(−1, 1) to obtain a list of n random samples

〈a0, a1, . . . , an−1〉 giving one random sample for each dimension. Using the n random samples, the

generating code X0 is constructed as

X ′0[i] = ai, i ∈ 0, 1, . . . (4.16a)

X0 =
X ′0
‖X ′0‖2

(4.16b)

Results indicated (as shown in figure 4.3 on the following page) that the optimised code performed

extremely strongly, and in fact was the best contender on all Variant 2 scheme tests. There exists

a better codebook for Variant 1 in R3 as there are six elements in the permuted codebook, yet only

2blog2(6)c = 4 codes being usable. With two codes being removed arranging the codes to be in the

form of a square gives better distance properties than a hexagon. Optimally removing elements was

not explored in this project, hence the reason a better code existed in the n = 3 case on Variant 1.

Overall the Nealer-Mead Simplex optimisation method proved an outstanding success, due to the

ability to make the problem convex and optimise for a solution. The performance of the optimised

code against the random code benchmark comes to light as n grows, the gap between the optimised

and random codes grow in turn, with a clear example shown in figure 4.3d on the next page.

Comparison to QAM and Thomson

Permutation on 4 dimensions (two complex channels) Variant 2 was selected due to higher rates

and better point distribution over Sn−1. This permutation choice gives
⌊
log2(244!)

⌋
= 8 bits over two

complex channels, or four bits per channel which gives an identical rate to conventional 16-QAM.
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(a) Performance of Permutation in R3, Variant 1
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(b) Performance of Permutation in R3, Variant 2
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(c) Performance of Permutation in R4, Variant 2
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(d) Performance of Permutation in R5, Variant 2

Figure 4.3: Performance of optimised vs random codes, optimised codes were never beaten by
random codes in Variant 2

The experimental results (visible in figure 4.4b on the following page) showed Thomson modulation

offered significant performance increases over Permutation, which suggests that the Permutation

scheme uses space poorly. QAM however was the best performer of all the schemes, but not sig-

nicantly better than Thomson owing to its faster roll-off in BER. Experimental results in R3 (visible

in figure 4.4a on the next page), again indicated that Thomson was again a better performer than

Permutation.

Comparison of Maximum Likelihood Decoder Against Rank Decoder

The rank decoder as outlined in section 4.1.4 on page 31 was quantitatively compared against

maximum likelihood. The experimental results shown in figure 4.5 on the next page show that maxi-

mum likelihood provides a small improvement over rank decoding for Variant 1, but only by fractions

of a decibel (when considering the point at which BER = 10−3). Under Variant 2 (with sign flips), the

BERs appeared to be much closer between rank and maximum likelihood, with rank having marginally

better performance than maximum likelihood. This result may be due to the way the sign detector

assigns bits, providing some noise robustness even when the specific permutation cannot be deter-

mined. This result is significant as rank decoding allows for significantly less computation to occur
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capacity

Figure 4.4: Performance of Permutation Variant 2 compared with Thomson in 3 and 4 dimensions,
this is used to gauge how well Permutation uses the available space

to find the assigned symbol (i.e. no high dimensional search is required), and its output is naturally

prepared for conversion to Lehmer codes and therefore binary. The result shows that by only using

comparatively few mathematical operations O(n log(n)) scaling can be exercised in practise.
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Figure 4.5: Comparing Permutation Modulation with the Maximum Likelihood decoder against the
Rank decoder
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4.2 Graph Modulation

4.2.1 A brief introduction to graphs

Graph modulation looks at modulation from a different angle, the goal is the find a scheme which

allows for the combination of multiple channels to transmit an object structured as a graph. A graph

in this context is a combinatoric structure amounting to a set of objects (vertices, V) in which some

pairs are related (connected by edges). Some examples of graphs are visible in figure 4.6.

The nomenclature for labelling graphs in this section is to let the nodes have letters of the Greek

alphabet, such that the set V = {α, β, γ, δ, . . . } contains all the labelled nodes in the graph.

α β

γ δ

(a) An undirected graph

α β

γ δ

(b) A directed graph

α β

γ δ

(c) A graph with a self-loop

Figure 4.6: Examples of labelled graphs with four nodes, with differing properties

Adjacency matrices are another method of representing graphs. Using figure 4.6, some examples

of adjacency matrices with A, B and C being subfigures a, b, and c are:

A =



α β γ δ

α 0 1 0 1

β 1 0 0 0

γ 0 0 0 0

δ 1 0 0 0


, B =



α β γ δ

α 0 1 0 1

β 0 0 0 0

γ 0 0 0 0

δ 0 0 0 0


, C =



α β γ δ

α 0 1 0 1

β 1 0 0 0

γ 0 0 2 0

δ 1 0 0 0


(4.17)

On the adjacency matrix, a simple graph with no self-loops will have zeros on the diagonal and

undirected graphs will be symmetric. With the goal in mind that a modulation scheme needs to be

designed, the decision was made to work with undirected, simple graphs for this section as they are

the simplest case with graphs.

Number of different possible graphs

The number of different possible graphs given a set of vertices V where |V| = r, and working

under the undirected and no cycles constraints the number of possible distinct edges is NV = r(r−1)
2 ,

giving 2NV different possible graphs. This is an excellent motivator, as if a scheme can be developed
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that considers each edge as a bit and each channel as a node, a O(n2) growth in capacity would be

possible. For example, under the case of a fifty node graph, 50(50−1)
2 = 1225 edges are present, in

a communications channel where there are 50 nodes and each individual node can be adequately

represented by a single channel, a capacity of 1225
50 = 24.5 bits per channel per symbol is achieved.

Under comparison with M -QAM, this would require M ≈ 2.37× 107, which is entirely infeasible.

4.2.2 Distinct Sets of Subset Sums

The first method considered to tackle the problem of encoding a graph of n(n−1)
2 bits on n channels

was to use a property called distinct sets of subset sums. This strategy would be to try and ‘relate’

resources together through a shared element in each of their sub-symbols. Using figure 4.7 as a

guide, each related channel pair would share the same element, for example with channel α and γ,

they both share the element b in each of their sub-symbols.

α β

γ δ

(a) Unstructured example

α β γ δ

a+ b+ c a+ d b+ d c

(b) Distinct sets of subset sums example

Figure 4.7: Both figures show the same undirected graph but one is represented in a format to
demonstrate how encoding with distinct sets of subset sums would appear

The key detail is for the sums on each channel to be distinct, such that the elements used (a, b, c, d

in the example above) can be determined. To obtain some intuition on how the distinct sets of subset

sums works for each channel’s individual sub-symbol, each sub-symbol Xi must be some distinct

sum of elements of a set S

Xi =
∑
g∈G

g with G ⊂ S (4.18)

If the detail on S is ignored and distinct subset sums is assumed true and a ‘sub-codebook’ is created

for each channel to use,

Csub =

∑
g∈G

g with G ⊂ S

 (4.19)

there are a maximum of 2|S| different possible sums, and therefore a maximum of 2|S| elements

present in Csub. This result is easily seen through each element in S either being added or not, which

can be written as a binary array signifying if each element is added. What this result implies is the

binary representation of numbers points to the only way to create the finite set S of which subsets
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can be taken, and their elements summed to distinctly describe all integers up to a limit. For example

the set S =
{

20, 21, 22, . . . , 2k−1
}

can distinctly generate any integer up to 2k − 1. For the case of

encoding graphs as in the earlier example, |S| = n− 1.

This result gives no benefit, as it merely describes the communications problem in a convoluted

way. Namely, if an additive codebook is made, there still needs to be 2|S| one-hot vectors in the

sub codebook for each channel. This realisation made it clear that although not a solution to graph

modulation, this route can be explored through simplifying it by encoding the edges present with an

existing scheme.

4.2.3 Edge-Encoding Schemes

The next step in searching for a solution to graph modulation was to look at using the graph’s

structure to encode bits. As noted in section 4.2.1 on page 36, the number of edges in a graph grows

as the square of the number of nodes, so a logical approach is to attempt to encode the edges as

bits.

A scheme was devised which uses the properties noted in section 4.2.2 on the preceding page

of ‘relating’ resources together, and while it has the potential to offer benefits, the scheme ends up

reducing to repetition coding.

First (by a slight abuse of standard notation), the Star Graph Hi is defined, this is a complete

bipartite graph with a single internal node and and edges connecting to all other nodes. An example

for the case Hα is visible in figure 4.8.

For sake of example the n = 4 (NV = 6) case is shown, with the example data d = 〈1, 1, 1, 0, 1, 0〉,

giving graph G as visible in figure 4.9.

α β

δ γ

Figure 4.8: A star graph, Hα

α β

δ γ

Figure 4.9: The example graph G which will be
used to demonstrate this scheme
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The devised scheme works as follows, d ∈ FNV2 is transformed into a graph by raster filling the

adjacency matrix’s lower and upper triangles

G =



α β γ δ

α 0 d0 d1 d2

β d0 0 d3 d4

γ d1 d3 0 d5

δ d2 d4 d5 0


=



α β γ δ

α 0 1 1 1

β 1 0 0 1

γ 1 0 0 0

δ 1 1 0 0


(4.20)

This graph G is then intersected with Hi, giving partial graphs Ei,

Ei = G ∩Hi ∀i ∈ V (4.21)

The action of creating these partial graphs shows for a single node how it is connected to the rest

of the graph. From the point of having partial graphs available, partial codes are generated for each

node. A diagrammatic view of how this is achieved is shown in figure 4.10, where by looking clockwise

around each node and tracking edge presence or absence, the partial code can be generated. This

can also be achieved by reading each column of the adjacency matrix and ignoring the diagonal, as

shown in figure 4.11. Each of the n partial codes are then encoded and sent on n separate channels

with a standard APSK method (for the sake of simplicity, 2n−1-QAM was used as it has consistently

displayed high performance throughout this report).

α β

δ γ

1 1

0

Figure 4.10: The Partial Graph, Eδ, giving the
Partial Code 〈1, 1, 0〉

0 1 1 1

1 0 0 1

1 0 0 0

1 1 0 0




Figure 4.11: A method of obtaining Partial Codes
involving only the adjacency matrix. Codes are
read on the column from top to bottom, with the

diagonal ignored. Note the magenta code 〈1, 1, 0〉
being the equivalent to figure 4.10

The demodulator obtains n separate complex values (one from each channel) which can be in-

dividually decoded to the original partial codes, but the decision is delayed until all the partial codes

are obtained. Once all the codes are obtained a maximum likelihood decision is made using all the

information available, as any single channel contains some information on all the other channels.

As G is symmetric and every element in G is transmitted, there are two copies of the binary data
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being sent, so this scheme theoretically breaks down to standard repetition coding. This gives the

scheme a capacity of C = n(n−1)
2 but only n−1

2 bits per channel. This scheme also requires 2n−1

one-hot vectors on each channel (this can be interpreted as having a 2n−1-QAM sub codebook for

each channel), making its performance with scale (letting n grow large) poor.

A potential benefit (above regular repetition coding) of this scheme is in the fact that any two bits

are on the same channel only once. An interesting feature of this scheme is that it operates with the

support of D2|V| as each channel has its own maximum power constraint, suggesting it should have

better point spacing than a scheme like permutation which is constrained to Sn−1.

Implementation Details and Results

The graph scheme used QAM constellation points which were Gray coded with the aim of ensur-

ing the performance is as high as possible. The decoder used was a maximum likelihood decoder

which has a codebook of all possible combinations of QAM symbols over all the 5 channels.

The scheme devised above was found to perform extremely poorly when compared to other

identical rate per channel schemes. An experiment was run with |V| = 5, which gives 5·4
2 = 10

bits per symbol, or two bits per channel per symbol, the results are demonstrated in figure 4.12.

Comparing with which SNR schemes have a BER = 10−3, 4-QAM beat 16-QAM repetition coding

by 3.9 dB, and beat Five Node Graph Modulation by 29.2 dB. A particular feature to highlight from

this experiment was the slow roll-off of the Graph Modulation scheme, a tenfold decrease in BER

occurring every 10 dB. The dependence between symbols may cause them to be poorly spaced, i.e.

not maximising distance properties, which may be a feature causing the slow roll-off in BER.

The results found suggest that there are better methods than the proposed graph scheme for an

identical number of bits per symbol per channel. Similarly, that distributing the bits over all channels

may not be the most effective solution to increasing performance. The graph scheme could not be

compared for other numbers of nodes due to the dramatic exponential increase in sub codebook size.

-20 -10 0 10 20 30 40 50
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

16-QAM Repitition 2

4-QAM

5-Graph

Figure 4.12: The proposed Edge Encoding scheme has identical performance and rate to Repetition
Coding
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4.2.4 A Potential Cut-Encoding Scheme

After the attempts with earlier schemes, and finding they are either impossible or simplify to known

methods, a more heuristic approach was employed to try and find a method that offers O
(
n1+ε

)
ca-

pacity. A potential method may lie in looking between the nodes and enumerating their connections,

rather than explicitly defining how they are connected to one and other. The framework for a scheme

was developed that takes a graph, arranges the nodes inline, and looks in the gaps between the

nodes to see how many crossings occur with the edges. A tangible example to demonstrate this is

in figure 4.13, which shows how by considering the number of crossings of each dotted line gives a

code (noted in the boxes below), for the example in figure 4.13b, the code is X63 = 〈3, 4, 3〉.

α β

γ δ

(a) Unstructured example

α β γ δ

3 4 3

(b) Cut-code example

Figure 4.13: Both figures show the same fully connected, undirected graph but one represented in a
format that can be used for cut-codes

There does however exist ambiguity in this method. Cutting a graph in this manner is a many to

one mapping, with a tangible example in figure 4.15 on the following page. Another way to demon-

strate that ambiguity must exist is by viewing the maximum number of uniquely codable bits by the

‘cut codes’ and comparing it to the number of bits in the graph. This is demonstrated in figure 4.14,

which shows for |V| > 5 there are no unique mappings for a graph.
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Figure 4.14: The number of bits able to be uniquely coded by the cut-code compared to the number
of bits in the graph, demonstrating for a sufficiently large graph ambiguity must exist
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α β γ δ

1 1 1

(a) Cut-code 3 edges

α β γ δ

1 1 1

(b) Cut-code 2 edges

α β γ δ

1 1 1

(c) Cut-code 2 edges

α β γ δ

1 1 1

(d) Cut-code 1 edge

Figure 4.15: Ambiguity exists in the cut-code structure, it is a many-one mapping, as demonstrated
by subfigures a, b, c and d having the same cut-code

Ambiguity was attempted to be removed by considering the graph vertex order of the central

nodes. The graph vertex order is known for the two edge nodes (as denoted by the first and last

elements of the cut-code), so the central nodes’ orders are transmitted2 in series after the cut code.

An attractive feature this method is that the numbers generated as the cut-code grow quadrat-

ically with respect to the number of edges, whereas typical encoding methods require exponential

growth. The maximum values a cut-code can have (given n = |V| − 1 channels) is bounded by the

multiplication table read by antidiagonals3 , whereas the maximum value that will exist in a cut-code

of n channels is bounded by the quarter-squares4,
⌊
n
2

⌋ ⌈
n
2

⌉
.

A Potential Decoder

The decoder used relies on a linear programming optimiser to attempt to solve the system. For

|V| < 5 the system has an equal or greater number of constraints to the number of bits present, but

for larger |V| this is not the case, hence requiring the optimiser.

First the ‘net connections from left to right’ for each node are calculated from the given cut-code.

This describes the node’s connections, if it’s negative there are more edges connecting from the left

than there are edges leaving to the right, the calculation to achieve this is shown by the pseudocode

% cutcode is an n-1 length cut-code
cutcode(N) = 0; % a zero is appended - no edges leave the last vertex to the right
for j = 1:N

if j > 1;
netconns(j) = (cutcode(j) - cutcode(j-1)); % the difference is calculated

else
netconns(1) = cutcode(1); % no edges join the first vertex from the left

end
end

Now the ‘net connections’ array (of |V|− 1 elements) is generated, the graph vertex orders (of |V|− 2

elements) are concatenated on the end, and the information is ready to be put into a solver as the

vector X ′i.
2Although just an implementation detail the integers for each the cut code and order channels can be sent by simply

enumerating the QAM lattice.
3The multiplication table read by antidiagonals are the OEIS sequence A003991
4The quarter-squares are the OEIS sequence A002620
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The solver has the structure
Maximise J1,NVd

′

Subject to Ad′ ≤ X ′i

and 0 ≤ d′ ≤ 1

(4.22)

where Ji,j is an i by j matrix of ones, A is the constraint matrix5, and d′ is the binary data out. An

intuitive way to view A is is by looking at the structure of graph when put in a line. If k resembles

which element of the array d′ is being operated in, blue elements show edges that can be connected

to node k on the right, whereas red elements show edges that can be connected to node k on the

left. Green elements dictate the vertex order, which is the sum of leftward and rightward edges.

For the |V| = 6 case (15 bits) the matrix A used in the linear programming optimiser is shown in

figure 4.16. A significant drawback of this decoder is that A is not totally unimodular, meaning the

problem is not guaranteed to solve to integers 0 and 1.

bits: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Channel:
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; nc1/ord1
-1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0; nc2
0,-1, 0, 0, 0,-1, 0, 0, 0, 1, 1, 1, 0, 0, 0; nc3
0, 0,-1, 0, 0, 0,-1, 0, 0,-1, 0, 0, 1, 1, 0; nc4
0, 0, 0,-1, 0, 0, 0,-1, 0, 0,-1, 0,-1, 0, 1; nc5
0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0,-1, 0,-1,-1; nc6/ord6
1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0; ord2
0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0; ord3
0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0; ord4
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1] ord5

Figure 4.16: Matrix used by the linear programming solver for |V| = 7 cut codes. nc dictates a net
connection channel, whereas ord dictates a vertex order channel.

Preliminary Results

A simulation was run to decode graphs in a noiseless channel. Since the address space (in

bits) grows as O(n2), 1 × 106 graphs were uniformly sampled for each |V| with the data d being

distributed as in section 2.1.1 on page 7, and were processed in parallel. The results showed the

‘cut-code’ scheme is far from a complete solution. Adding the node orders only pushed the problem

of ambiguity further down the road6 and graphs are still not uniquely decodable under this method.

Figure 4.17 on the following page shows that when considering orders or not, ambiguity is still rife in

this scheme, and a better method of removing it is required for any real progress to be made.

The space of solutions for d′ grows so rapidly that it cannot be constrained by this method, such

that cut-codes are an invalid scheme under these circumstances.
5An example of the constraint matrix is given in figure 4.16
6When considering the point that the number of bits in the graph overtakes the number of uniquely decodable bits in the

symbol as in figure 4.15 on the previous page, this point occurred at |V| = 9
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Figure 4.17: A plot to show the proportion of graphs that are incorrectly decoded, given the
presence of orders and without

4.2.5 Future Work

More work is required on this scheme to find a solution, and one may lie in some advanced

number or group theory that was outside the scope of this project. The fundamental problem with this

scheme is that the O(n2) growth is faster than a lot of mathematical methods, including permutation.

A next step may be in ambiguity resolution methods for the cut-code scheme, as the structure of

the graph (and cut-code) only permit certain combinations of edges. Due to the number of bits per

symbol in this scheme growing rapidly, and the data source being maximum entropy, there may be

benefits in having ambiguity resolution for cut-codes if on average the ambiguity takes comparatively

few bits to resolve.

A future method may rely on simplicial complexes, which are group of objects that graphs are a

subset of. While graphs have nodes and edges, simplical complexes have nodes, edges, triangles,

and high dimensional counterparts. The number of simplicial complexes given r vertices is known as

a Dedekind number (M ′(r)). Dedekind numbers are only known for7 0 ≤ r ≤ 8, but upper and lower

bounds are known to be [19]:

(
r

r/2

)
≤ log2

(
M ′(r)

)
≤
(
r

r/2

)(
1 +O

(
log(r)

r

))
(4.23)

This is an alarmingly fast rate of growth, as the logarithm of the number of complexes grows factorially

fast. If this could be formed into a modulation scheme, the number of transmitted bits would grow

factorially fast.
7As of 10th April 2019
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4.3 Summary on Heuristic and Ordering based Schemes

The work performed on ordering based schemes revealed the benefit of O(n log(n)) type capacity

scaling is available to be used in communications systems.

Permutation modulation’s codebooks were optimised to use the space available from the scheme

in an optimal manner, and were showed to perform strongly when compared to the expected random

code performance. Despite the high performance, Thomson modulation had a faster and earlier

rolloff to lower BERs, suggesting a more efficient usage of the space by the Thomson scheme.

The decoder of extreme interest from the general permutation scheme is the rank modulation,

which does not require the storage of any large codebooks, or any high dimensional searches to

be performed. Comparatively few mathematical operations need to be applied for this scheme to

gain the O(n log(n)) capacity scaling offered by Permutation modulation, and the application of rank

modulation’s nonlinear sort did not result in any significant amount (if any) performance degradation.

These details rather excitingly give rank modulation the ability to be applied in practise, meaning that

n can be driven to a large value to benefit from the performance increases provided by the scheme.

After exploring permutation modulation, work was then focused on trying to find a scheme which

has a capacity that scales as O(n1+ε) while using the structure of a graph. No useful result was

obtained from the search, suggesting that more work needs to be performed to adequately use the

structure of a graph to gain the mentioned performance increase.

�
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Chapter 5

Conclusions

5.1 A Summary on Capacity Growth Rates

Throughout this project the rate at which scheme capacity grows was explored. Figure 5.1 shows

the concluding results of how examples of all the explored schemes capacities grow given the equa-

tions derived throughout this report.
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Figure 5.1: Scheme Capacity (per symbol) vs Number of Resources, note that one ‘resource’ is a
single dimension, so for permutation a single channel yields n = 2 dimensions, and conventional

schemes (QAM) have n = 2 being a single channel, with Graph Modulation and Simplicial Complex
Modulation lower bound added as a future limit

The scaling of scheme capacity is not the entire goal when communications is in mind, as the bit

error rate for a given SNR must be adequately low to ensure the scheme is viable. The BER to SNR

curves for schemes with identical capacity per channel was interrogated, and room for improvement

was found to exist.

The way the power limit is defined for the communications problem makes comparing between

schemes challenging, due to different spaces inside being used. Nonetheless schemes with similar
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space usage were used to compare against, with the two dimensional case of QAM acting as a

benchmark against the majority of them.

Results showed the bit error properties of the devised ‘in ball’ Thomson scheme were worse than

that of QAM despite better distance properties being achieved. The Thomson scheme also proved

useful as a meaningful comparison against Permutation schemes, highlighting the poor use of space

permuting a vector gives. The flexibility of the Thomson scheme allowed for arbitrary numbers of

codes to be defined for the ‘on sphere’ and ‘in ball’ cases, such that Permutation could be compared

against for any rate. The Thomson scheme’s method of spacing points provided a large performance

improvement over what Permutation offered, but lacked the structure which would allow algorithms to

efficiently decode a received code (as with rank decoding).

Overall the problem of communications is a trade-off and practical engineering decisions need to

be made when choosing the best scheme for a system. Rank modulation’s efficient decoding method

coupled with the super-linear scaling highlight it as a very interesting scheme that needs more work

focused on it. The same optimal generating list made for permutation was used to compare against

rank, however (especially under Variant 2 systems) the true optimal generating list for rank may differ

from the one used. Exploring the intricacies of rank modulation generating lists was beyond the scope

of this project and is an interesting feature to look at in the future.

5.2 Project Conclusion

Conventional schemes like QAM were probed to find they have a linear growth rate, where the

number of the elements in the constellation dictates the ‘constant’ multiplying the number of channels

used.

The Thomson scheme was developed to space points optimally on the (n−1)-sphere, and exper-

imentation revealed an improvement in minimum distance properties when compared to QAM and

permutation. Since the problem of a general solution that places points inside a n-dimensional space

is an open problem, it is not known if the Thomson modulation has an optimal solution for inside the

ball. The capacity growth rate of this scheme, much like QAM, scales linearly but potential benefits

are offered in high dimensional space usage. The efficiency of point-packing in high dimensional

space was not explored due to the complexities of high dimensional spaces being outside the scope

of this report, and therefore the capacity growth rate was unable to be analysed formally. An analysis

of the high dimensional volume was run which revealed that the n-ball may not be the best possible

support for a modulation scheme to use. The suggestion that a scheme could use a space inside the

Cartesian product of 2-balls is especially interesting to follow up as it offers far more volume than the

n-ball, due to the power limit being defined differently (per channel rather than per symbol).
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Auto-encoders were used to try and find a higher level structure to reduce bit error rate, but the

computational complexity of training a model scaled poorly and research was halted due to far many

open questions regarding the scheme.

A combinatoric scheme, Permutation Modulation was then deeply investigated to see if there

lie any benefits in its use. The scheme’s super-linear growth rate of O(n log(n)) proved to be a

valuable asset, and the presence of efficient encoding and decoding methods allow for n to easily be

driven large without the storage of large and difficult to search codebooks. These practical benefits

could allow for permutation modulation to have a presence in modern-day communications, but more

experiments are needed for higher n to fully compare against identical rate schemes for QAM.

The proposal of using a graph as a method of achieving O(n2) capacity was explored, but the

analysis of the graph structure was found to be very applied and a bit beyond the scope of the

project. The use of a graph makes sense as they are well understood objects in combinatorics,

the same area of mathematics that allowed for the presence of the only other super-linear scheme

explored. A solution to graph modulation has not been found, but many methods have been explored

to try and exploit the graph structure, and only the two most promising schemes were included in this

report. The devised ‘edge encoding scheme’ currently has extremely poor performance but has room

to be improved due to its large amount of usable space and potentially robust encoding properties.

The explored ‘cut encoding scheme’ was found to not be valid due to the many to one mapping of

the codes produced, and the problem of ambiguity being a limiting factor to the scheme. A reliable

method of resolving the ambiguity of the ‘cut encoding’ scheme is required if the method has any

hope of working correctly.

Overall the properties of using a graph suggest that O(n1+ε) scaling may be possible. More work

needs to be performed on graph modulation to find a result that can scale sufficiently fast and without

ambiguity.
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